Performance analysis of a Ge/Si core/shell nanowire field-effect transistor.

نویسندگان

  • Gengchiau Liang
  • Jie Xiang
  • Neerav Kharche
  • Gerhard Klimeck
  • Charles M Lieber
  • Mark Lundstrom
چکیده

We ana/lyze the performance of a recently reported Ge/Si core/shell nanowire transistor using a semiclassical, ballistic transport model and an sp3d5s* tight-binding treatment of the electronic structure. Comparison of the measured performance of the device with the effects of series resistance removed to the simulated result assuming ballistic transport shows that the experimental device operates between 60 and 85% of the ballistic limit. For this approximately 15 nm diameter Ge nanowire, we also find that 14-18 modes are occupied at room temperature under ON-current conditions with ION/IOFF = 100. To observe true one-dimensional transport in a 110 Ge nanowire transistor, the nanowire diameter would have to be less than about 5 nm. The methodology described here should prove useful for analyzing and comparing on a common basis nanowire transistors of various materials and structures.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Diameter-independent hole mobility in Ge/Si core/shell nanowire field effect transistors.

Heterostructure engineering capability, especially in the radial direction, is a unique property of bottom-up nanowires (NWs) that makes them a serious candidate for high-performance field-effect transistors (FETs). In this Letter, we present a comprehensive study on size dependent carrier transport behaviors in vapor-liquid-solid grown Ge/Si core/shell NWFETs. Transconductance, subthreshold sw...

متن کامل

Spin Polarized Transport in Core Shell Nanowire of Silicon and Germanium

We investigate spin polarized electron transport in ultra-thin Si-Core/Ge-Shell and GeCore/Si-Shell nanowire system using semi-classical Monte Carlo simulation method. Depolarization of electron’s spin occurs in nanowire mainly due to D’yakonov-Perel dephasing (DP-mechanism) and Elliott-Yafet dephasing (EY-mechanism). We studied the dependence of spin dephasing on ultra-thin silicon core diamet...

متن کامل

Switching Performance of Nanotube Core-Shell Heterojunction Electrically Doped Junctionless Tunnel Field Effect Transistor

Abstract: In this paper, a novel tunnel field effect transistor (TFET) is introduced, thatdue to its superior gate controllability, can be considered as a promising candidate forthe conventional TFET. The proposed electrically doped heterojunction TFET(EDHJTFET) has a 3D core-shell nanotube structure with external and internal gatessurrounding the channel that employs el...

متن کامل

Performance Study and Analysis of Heterojunction Gate All Around Nanowire Tunneling Field Effect Transistor

In this paper, we have presented a heterojunction gate all around nanowiretunneling field effect transistor (GAA NW TFET) and have explained its characteristicsin details. The proposed device has been structured using Germanium for source regionand Silicon for channel and drain regions. Kane's band-to-band tunneling model hasbeen used to account for the amount of band-to...

متن کامل

Transport modulation in Ge/Si core/shell nanowires through controlled synthesis of doped Si shells.

Appropriately controlling the properties of the Si shell in Ge/Si core/shell nanowires permits not only passivation of the Ge surface states, but also introduces new interface phenomena, thereby enabling novel nanoelectronics concepts. Here, we report a rational synthesis of Ge/Si core/shell nanowires with doped Si shells. We demonstrate that the morphology and thickness of Si shells can be con...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nano letters

دوره 7 3  شماره 

صفحات  -

تاریخ انتشار 2007